

POLARIMETRÍA

OBJETIVOS:

- a) Familiarizarnos con las bases del funcionamiento y manejo de un polarímetro
- b) Deducir la relación conocida como Ley de Biot
- c) Determinar el poder rotatorio específico de la sacarosa.

MATERIALES Y SUSTANCIAS:

- Polarímetro
- Balanza
- Matraz aforado de 100 mL
- Probeta de 100 mL
- Regla
- Embudo
- Varilla de vidrio
- Fuente de 12 V
- Papel de filtro
- Sacarosa
- Agua destilada

PROCEDIMIENTO:

El polarímetro que utilizaremos puede ser fácilmente armado con el material presente en las cajas "Mecánica I" y "Óptica" de Leybold.

La imagen superior muestra el instrumento armado y listo para su calibración.

I) Reconocimiento y calibración

Es fundamental que nos familiaricemos con el instrumento y lo calibremos adecuadamente. El resultado de la actividad depende de ello.

- 1) Identifique en el polarímetro sus componentes fundamentales: Fuente luminosa, difusor, filtro monocromador, polarizador, analizador y cubeta de muestras.
- 2) Mida en la cubeta (probeta de 100 mL) la altura desde el fondo hasta las correspondientes divisiones de la escala que aparecen en la Tabla 1 y anótelas.
- 3) Coloque en la probeta 100 mL de agua destilada y ubíquela en el polarímetro.
- 4) Encienda la lámpara del polarímetro.
- 5) Gire el analizador hasta colocarlo en la posición cero de la escala graduada.
- 6) Gire el polarizador hasta que la luz transmitida por el analizador alcance un mínimo.
- Si está trabajando en equipo busque llegar al consenso en este punto.

El polarímetro está calibrado y pronto para realizar mediciones.

ATENCIÓN: A partir de este momento no deberá modificar la posición del polarizador. En caso de hacerlo tendrá que repetir la calibración del instrumento.

II) Ley de Biot

Ahora buscaremos establecer la relación existente entre el ángulo de rotación del plano de vibración de la luz polarizada con la distancia recorrida por la luz a través de la muestra y con la concentración de esta última.

- 7) Prepare 100 mL de solución de sacarosa de concentración 0,2 g/mL.
- 8) Coloque en la cubeta 20 mL de la solución preparada.
- 9) Con la cubeta en el polarímetro, gire el analizador hasta que el filamento deje de ser visible.
- 10) Anote el valor de θ .
- 11) Repita las operaciones 8, 9 y 10 para los volúmenes de solución indicados en la tabla
- 12) Coloque en la cubeta 20 mL de solución de sacarosa.
- 13) Agregue 80 mL de agua. Homogenice la solución utilizando la varilla de vidrio. Determine θ y anótelo en la tabla II.
- 14) Proceda de manera similar según lo que indica la tabla.

PROCESAMIENTO DE DATOS:

- ✓ Calcule la concentración de sacarosa en cada muestra de la tabla II.
- ✓ Grafique:
 - $\theta = f(h)$
 - $\theta = f([solución])$
- ✓ Determine la relación matemática entre θ y las variables estudiadas.
- ✓ Determine el poder rotatorio específico de la sacarosa y expréselo con su incertidumbre.
- ✓ Compare el valor experimental con el aceptado, y discuta la exactitud y precisión del procedimiento empleado.
- ✓ En función de los resultados obtenidos, proponga las condiciones de trabajo que considere más apropiadas para obtener medidas fiables.

HOJA DE DATOS:

Tabla 1

V solución (mL)	h (dm)	[solución] (g/mL)	θ
20		0,2	
40		0,2	
60		0,2	
80		0,2	
100		0,2	

Tabla 2

V solución (mL)	V agua (mL)	[solución] (g/mL)	h (dm)	θ
20	80			
40	60			
60	40			
80	20			
100	0			

Autor: Roberto Calvo.

Créditos:

✓ **Imágenes:** Propias del autor.

Fecha de publicación: 27 de septiembre de 2008.

Esta obra está bajo una Licencia Creative Commons Atribución-CompartirIgual 4.0 Internacional.