

MOSQUITOS

Aedes aegypti

Departamento de Parasitología y Micología

Laboratorio de Entomología – 2007

Actualizado 2016 por las Mtras. Contenidistas:

Andrea Etchartea y Elida Valejo

Aedes albopictus

GENERALIDADES

Mosquitos

Culex

PHYLUM: Artrópodos

CLASE: Insecta

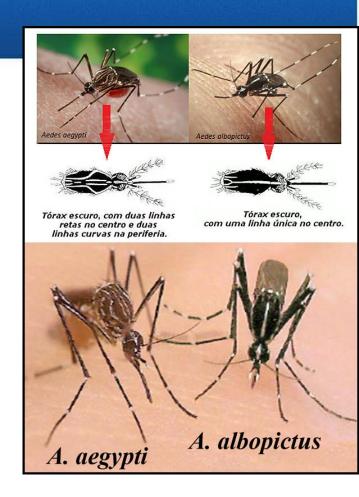
ORDEN: Díptera

• FAMILIA: Culicidae

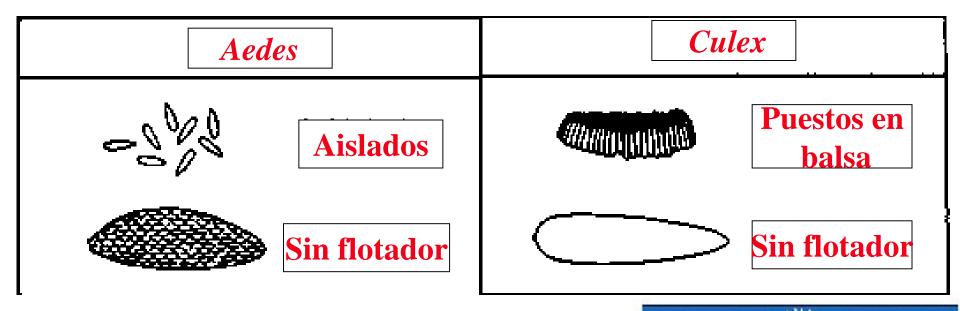
• SUBFAMILIA: Culicinae y Anophelinae

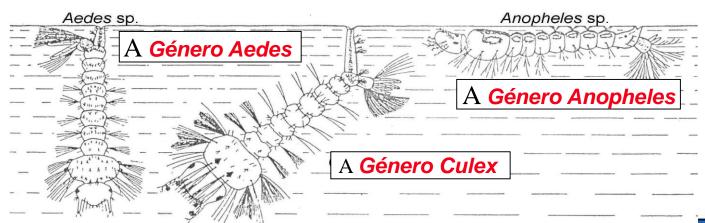
• GÉNEROS: Aedes, Culex y Anopheles

Anopheles


Aedes

¿QUÉ PROVOCAN ESTOS MOSQUITOS ?


- MECANISMO PATÓGENO DIRECTO: MICROPREDACIÓN
- VECTORES BIOLÓGICOS DE DIVERSOS AGENTES INFECCIOSOS:
 - Anopheles: paludismo
 - Culex: Virus del Oeste del Nilo y otros
 - Aedes Aegyptis y Albopictus: Dengue, Fiebre Amarilla, Sika y Chikungunya


➢ Género Aedes: estructura poligonal, aislados. ➤ Género Culex: dispuestos en grupo, como una corona "balsa flotante".

Características de las larvas:

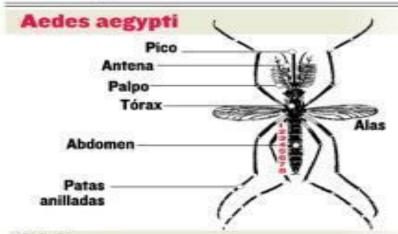
- > Género Anopheles: ausencia de sifón respiratorio
- ➤ Género Aedes: sifón respiratorio corto, cuelgan con la cabeza hacia abajo perpendicular a la superficie del agua.
- ➤ Género Culex: sifón respiratorio largo, cuelgan con la cabeza hacia abajo oblicuo respecto a la superficie del agua.

Características de las pupas:

➤ Género Anopheles: trompetillas cortas.

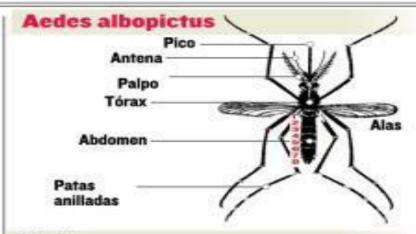
➢ Género Aedes: trompetillas medianas en bisel.

➤ Género *Culex*: trompetillas largas, cilíndricas, estrechas.



Género Aedes se posan paralelo a la superficie.

Rasgos distintivos



Adultos

Rayas plateadas en forma de lira sobre el fondo oscuro del tórax.

Larvas

- Espinas del tórax bien desarrolladas.
- Espinas del segmento número ocho abdominal con un diente y medio y dientes laterales desarrollados.

Adultos

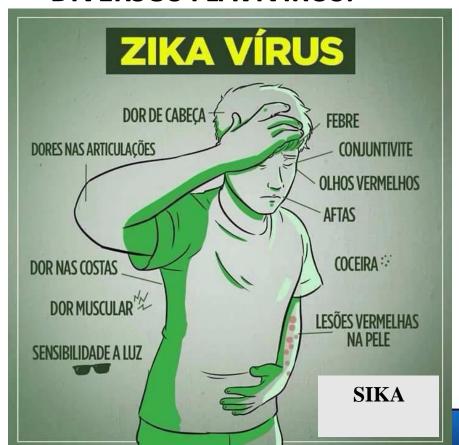
Franja media plateada sobre el fondo oscuro del tórax.

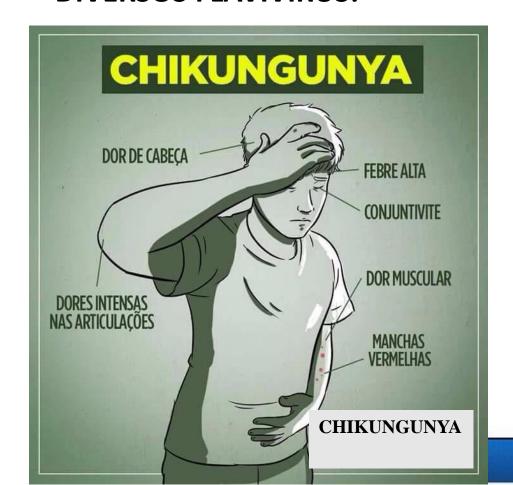
Larvas

- Espinas del tórax pequeñas.
- Espinas del segmento número ocho abdominal con un diente.


VECTOR BIOLÓGICO DE DIVERSOS FLAVIVIRUS:

FIEBRE AMARILLA




VECTOR BIOLÓGICO DE DIVERSOS FLAVIVIRUS:

Aedes aegypti Linnaeus, 1762 VECTOR BIOLÓGICO DE DIVERSOS FLAVIVIRUS:

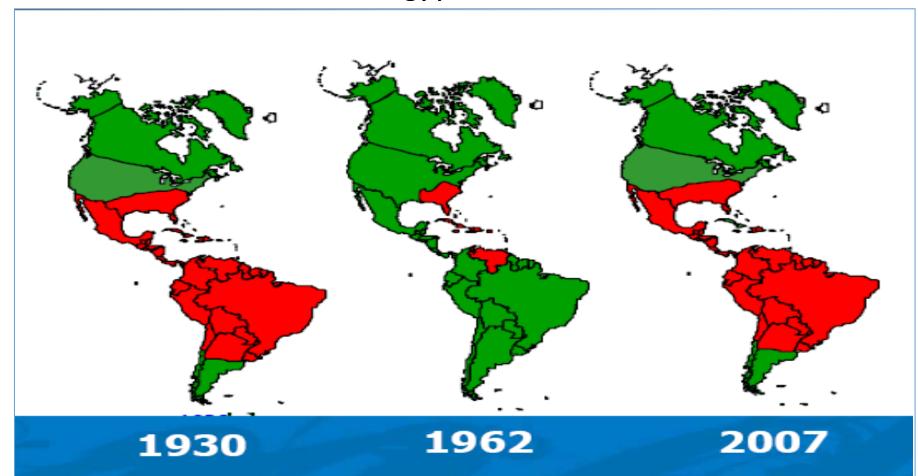
Aedes aegypti

Linnaeus, 1762

- Originario de África de la región etiópica donde es una especie silvestre.
- Distribución cosmopolita dentro de los límites de las latitudes 45°N y 35°S.
- Susceptible a temperaturas muy extremas y climas cálidos secos

Aedes aegypti

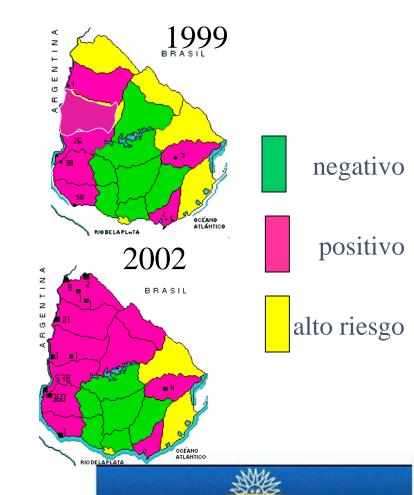
Linnaeus, 1762


- Originario de África de la región etiópica donde es una especie silvestre.
- Distribución cosmopolita dentro de los límites de las latitudes 45°N y 35°S.
- Susceptible a temperaturas muy extremas y climas cálidos secos

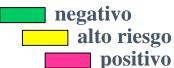
Evolución de la distribución Aedes aegypti en América

Aedes aegypti y Dengue en Uruguay

- 1916 Epidemia de dengue en la ciudad de Salto
- 1918 Lutz determina la presencia de A. aegypti en Montevideo
- 1927 Gaminara y Talice confirman la infestación en Montevideo
- 1929 Se inician las primeras acciones en control larvario por petrolización
- 1943 Se alcanza la erradicación de A. aegypti en Rivera
- 1948 Proyecto 28 Campaña de erradicación de A. aegypti MSP- OMS
- 1958 Uruguay logra la erradicación de A. aegypti
- 1959 –1997 Acciones de vigilancia larvaria
- 1997 se produce la reinfestación de nuestro país por *A. aegypti* (Depto. de Colonia).


EVOLUCION DEL Aedes aegypti EN URUGUAY

CIUDADES POSITIVAS A Aedes aegypti. Evolución: 1997-2002

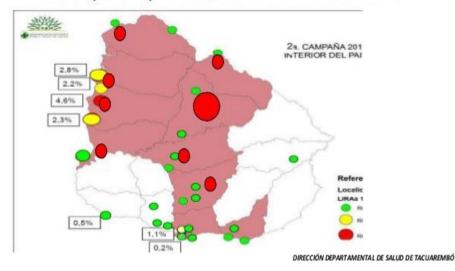


RESULTADOS AÑO 2003

RESULTADOS AÑO 2004

Aedes aegypti en Uruguay: Mayo 2007

Aedes aegypti en Uruguay


2011

Decile NO al Dengue

¿HAY DENGUE EN URUGUAY?

EN MUCHOS DEPARTAMENTOS ESTÁ PRESENTE EL MOSQUITO QUE TRASMITE LA ENFERMEDAD.

2016

El mosquito está presente en Montevideo.

 Puede aparecer en cualquier Departamento o barrio favorecido por las condiciones ambientales

• Las hembras hematófagas poseen hábitos de alimentación diurnos, en cercanía a los domicilios humanos, con gran afinidad a la alimentación sobre el hombre (antropofilia diurna).

Los adultos pierden actividad por desecación o por debajo de 12-

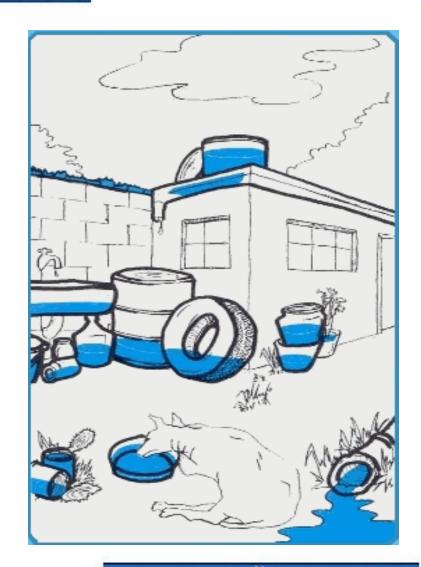
14°C.

Mosquito netamente doméstico

- * Los verdaderos mosquitos.
- Las hembras son hematófagas (se alimentan de la sangre de otros animales), y por ello son frecuentes vectores de enfermedades infecciosas.
- * Los machos no se alimentan de sangre.
- Excepcionalmente, las hembras de una subfamilia de culícidos, Toxorhynchites, no ingieren sangre y sus larvas son predadoras de otras larvas de mosquitos.

Los Machos Y Las Hembras Adultas

- Las zancudos hembras por lo general son más grandes que los machos.
- Las hembras tienen antenas tan finitas como hilo con unos pocos pelos,
- sin embargo los machos tienen antenas peludas.

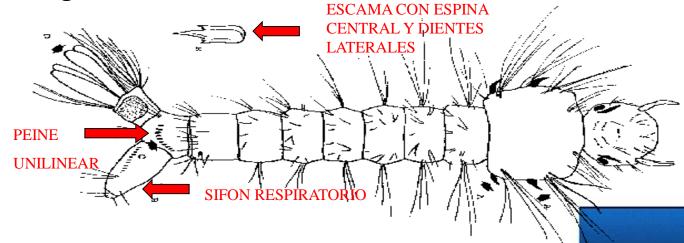


Aedes aegypti Linnaeus, 1762 CICLO BIOLOGICO

- Oviposita a nivel de la interfase agua/aire en colecciones de agua limpia naturales o artificiales, con bajo tenor orgánico y de sales disueltas, en el ámbito peridomiciliario.
- Criaderos: charcos, tanques, neumáticos, recipientes descartables diversos, preferentemente de color oscuro, baterías viejas, recipientes de todo tipo, botellas, floreros, piletas, hoyos, cavidades de árboles y rocas.

Aedes aegypti Linnaeus, 1762 HUEVOS

- La mayor parte de cada postura (hasta 500 huevos por hembra) es de eclosión rápida. Un porcentaje reducido constituye los llamados huevos resistentes, inactivos o residuales, capaces de largas sobrevidas (estadío de diapausa).
- Inicialmente son de color blanco, luego negros con el desarrollo del embrión, que evoluciona en óptimas condiciones de temperatura y humedad en un lapso de 2 a 3 días.
- Los huevos son capaces de resistir desecación y temperaturas extremas con sobrevidas de siete meses a un año o más y eclosionan tras unos 4 días de húmedad.



MORFOLOGIA Y BIOLOGIA de la larva

- Las larvas que emergen inician un ciclo de cuatro estados larvarios (tres mudas), de un largo de 1 mm a los 6 o 7 mm finales.
- En el octavo segmento abdominal presentan un peine unilinear de 12 escamas oscuras y de diseño típico con espina larga y dientes laterales.
- Sifón respiratorio con forma de oliva corta, que destaca por su color negro.

MORFOLOGIA Y BIOLOGIA de la larva

- Su desarrollo se completa en condiciones favorables de nutrición y con temperaturas de 25 a 29ºC, en 5 a 7 días
- Están dotadas de movimientos característicos verticales, entre fondo y superficie, se disponen en forma de ese (S) durante los mismos.
- Son incapaces de resistir temperaturas extremas, impidiéndose a mendo de 13ºC su pasaje a estadio pupal.
- Se alimentan del zoo y fitoplancton de los recipientes que habitan.

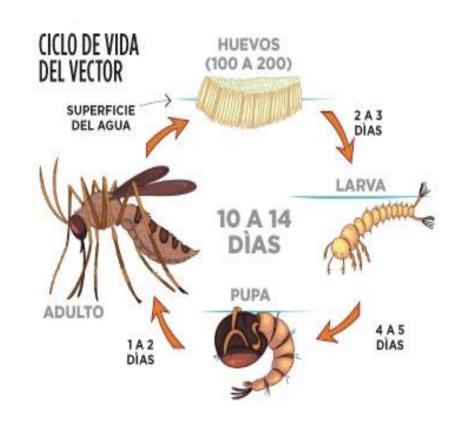
MORFOLOGIA Y BIOLOGIA de la PUPA

- Presenta coloración oscura, aspecto de coma, con 2 segmentos: cefalotórax y abdomen.
- Es móvil, no se alimenta.
- Entre 28º y 32ºC completa su desarrollo hasta la emergencia del adulto en 1 a 3 días.

Las variaciones extremas de temperatura pueden dilatar este

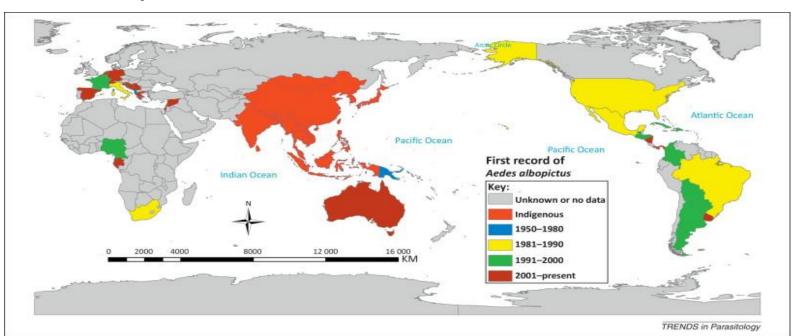
período.

MORFOLOGIA Y BIOLOGIA del adulto


- El adulto emergente es un mosquito de color negro.
- Diseños blanco-plateados formados por escamas claras que se disponen simulando la forma de una "lira", en el dorso del tórax.
- Anillado blanco y negro característico a nivel de tarsos, tibia y fémures de las patas.

Aedes aegypti Linnaeus, 1762 CICLO BIOLOGICO

- El ciclo de huevo a adulto se completa en óptimas condiciones de temperatura y alimentación, en 10 días.
- Infectante para dengue 10 a 14 días luego de la alimentación contaminante.
- Presenta una sobrevida de 30 días.

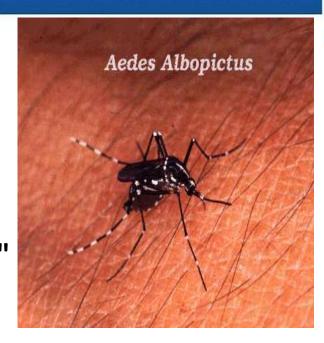


Aedes albopictus Skuse,1894

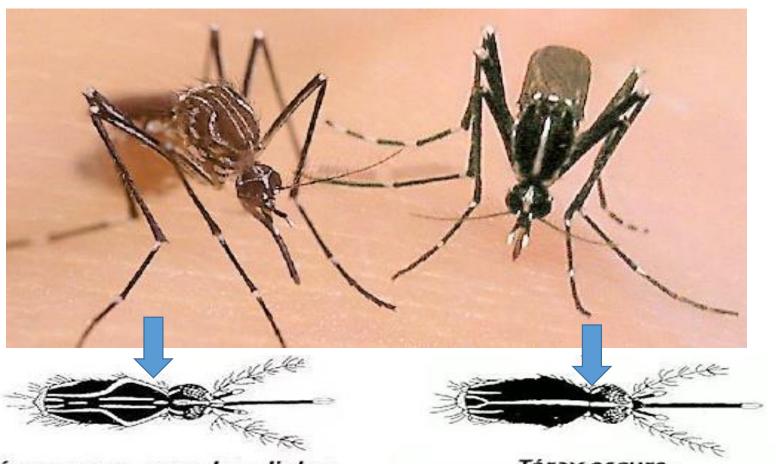
- Aedes albopictus es otra especie del subgénero Stegomyia, originario de Asia y Oceanía, donde es responsable de la transmisión de Dengue.
- Ingresa en América por transporte pasivo de larvas (neumáticos, bambú, etc)

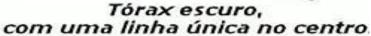
Aedes albopictus Skuse,1894

- Esta especie es más tolerante de las bajas temperaturas y mantiene una amplia variedad de criaderos, tanto en recipientes artificiales como naturales inclusive en ambientes silvestres.
- Estas características lo transforman en un vector de más difícil control e improbable eliminación, una vez que se radica.



Aedes albopictus Skuse,1894


- Se ha detectado una verdadera "competencia" con *A. aegypti* por los mismos tipos de criaderos en ambientes urbanos.
- A.albopictus logra desplazar gradualmente a su competidor, luego de un tiempo de coexistencia.
- Las hembras poseen hábitos hematofágicos eclécticos diurnos, con marcada presencia en el peridomicilio.
- El adulto se caracteriza por presentar un diseño de escamas plateadas, en cabeza y en dorso de tórax en forma de franja longitudinal.



Aedes aegypti / Aedes albopictus

Tórax escuro, com duas linhas retas no centro e duas linhas curvas na periferia.

Control de mosquitos

- Protección personal
 - Barreras físicas
 - Barreras químicas
- Control ambiental
- Control biológico
- Control químico
 - Insecticidas
- Atrayentes y trampas

CONTROL

DEPENDE DE LA LUCHA ANTIVECTORIAL

- TRATAMIENTO QUÍMICO ANTILARVARIO
- TRATAMIENTO QUÍMICO A UBV PARA ELIMINAR ADULTOS EN CASO DE RIESGO DE TRANSMISIÓN
- ELIMINACION DE CRIADEROS DOMICILIARIOS (CON PARTICIPACIOON DE LA POBLACION)
- MANEJO AMBIENTAL
- VIGILANCIA ENTOMOLOGICA
- VIGILANCIA EPIDEMIOLOGICA

El pilar fundamental de la campaña es la eliminación de los criaderos de Aedes aegypti

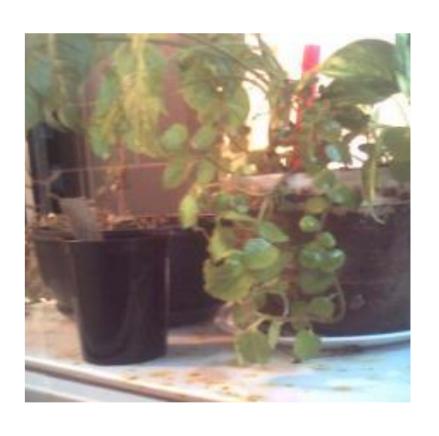
Herramientas de monitoreo Control de puntos estratégicos

 Punto estratégico: es un lugar de importancia a ser vigilado por el riesgo que representa para la presencia del mosquito, debido a su tráfico vehicular o humano o a su oferta de recipientes

con agua.

- Gomerías
- Chatarrerías
- Cementerios
- Terminales de ómnibus
- Puentes internacionales
- Barreras sanitarias
- Balanzas de camiones
- Zonas francas
- Cruces de rutas importantes, paradores, peajes.

Herramientas de monitoreo OVITRAMPAS



- Precipiente de boca ancha preferentemente de plástico, pintado de negro, de unos 500ml, que se llena de agua hasta los 2/3. En su interior se coloca en forma inclinada una paleta (2 X 12cm) con el lado áspero expuesto.
- La ovitrampa crea un hábitat favorable para que la hembra del Aedes aegypti deposite sus huevos justamente por encima del nivel del agua.

Herramientas de monitoreo OVITRAMPAS

- Se utiliza para detectar precozmente la presencia del vector así como para monitorear localidades con baja infestación.
- Es un instrumento de la Vigilancia Entomológica.

UBICACIÓN DE LAS OVITRAMPAS

- Sombreados.
- Tranquilos, distantes de áreas ruidosas.
- Fuera del alcance de niños o animales.
- Con vegetación.
- Con presencia humana permanente.
- Estratégicos (Terminales de ómnibus, aeropuertos, puertos, etc.)
- Libres de otros recipientes que compitan con la trampa
- Cerca de una canilla.
- A nivel del suelo o próximo a él.

CONTROL LAS OVITRAMPAS

- Retirar una vez por semana
- Comunicar a la comunidad para que colabore en el mantenimiento y conservación
 - 1º -Se saca la paleta
 - 2º-Se cambia el agua y se lavan las paredes del recipiente (este paso se puede evitar si las paredes se cubren con una bolsa de nylon)
 - 3°-Se pone una nueva paleta que lleva la fecha de colocación
 - 4º-Se anota en la planilla el nº de la ovitrampa, ubicación y fecha de colecta
- Las paletas se guardan una vez secas envueltas con papel absorbente para separarlas se remiten al Ministerio de Salud Publica para la identificación entomológica.

PREVENCION

- Eliminar todo recipiente inútil que pueda colectar agua
- Dar vuelta baldes, botellas y latas
- Sustituir por arena el agua de recipientes como macetas y floreros en domicilios y cementerios
- Eliminar los neumáticos y todo recipiente en desuso que pueda colectar agua.

PARA PREVENIR EL DENGUE SE DEBE EVITAR LA PROLIFERACIÓN DEL MOSQUITO TRANSMISOR

